

CircUp

[image: Documentation Status]
 [https://circuitpython.readthedocs.io/projects/circup/en/latest/][image: Discord]
 [https://adafru.it/discord][image: Build Status]
 [https://github.com/adafruit/circup/actions][image: Code Style: Black]
 [https://github.com/psf/black]A tool to manage and update libraries (modules) on a CircuitPython device.

Contents

	CircUp

	Installation

	What does Circup Do?

	Usage

	Library Name Autocomplete

	How to Activate Library Name Autocomplete

	Contributing

	Licensing

	Developer Setup

	How Does Circup Work?

	API

	License

Installation

Circup requires Python 3.5 or higher.

In a virtualenv [https://virtualenv.pypa.io/en/latest/],
pip install circup should do the trick. This is the simplest way to make it
work.

If you have no idea what a virtualenv is, try the following command,
pip3 install --user circup.

Note

If you use the pip3 command to install CircUp you must make sure that
your path contains the directory into which the script will be installed.
To discover this path,

	On Unix-like systems, type python3 -m site --user-base and append
bin to the resulting path.

	On Windows, type the same command, but append Scripts to the
resulting path.

What does Circup Do?

Each CircuitPython library on the device usually has a version number as
metadata within the module.

This utility looks at all the libraries on the device and checks if they are
the most recent (compared to the versions found in the most recent version of
the Adafruit CircuitPython Bundle and Circuitpython Community Bundle). If the libraries are out of date, the
utility helps you update them.

The Adafruit CircuitPython Bundle can be found here:

https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest

Full details of these libraries, what they’re for and how to get them, can be
found here:

https://circuitpython.org/libraries

The Circuitpython Community Bundle can be found here:

https://github.com/adafruit/CircuitPython_Community_Bundle/releases/latest

Usage

If you need more detailed help using Circup see the Learn Guide article
“Use CircUp to easily keep your CircuitPython libraries up to date” [https://learn.adafruit.com/keep-your-circuitpython-libraries-on-devices-up-to-date-with-circup/].

First, plug in a device running CircuiPython. This should appear as a mounted
storage device called CIRCUITPY.

To get help, just type the command:

$ circup
Usage: circup [OPTIONS] COMMAND [ARGS]...

 A tool to manage and update libraries on a CircuitPython device.

Options:
 --verbose Comprehensive logging is sent to stdout.
 --version Show the version and exit.
 --path DIRECTORY Path to CircuitPython directory. Overrides automatic
 path detection.
 --help Show this message and exit.
 -r --requirement Supports requirements.txt tracking of library
 requirements with freeze and install commands.

Commands:
 freeze Output details of all the modules found on the connected...
 install Installs .mpy version of named module(s) onto the device.
 install --py Installs .py version of named module(s).
 list Lists all out of date modules found on the connected...
 show Show the long list of all available modules in the bundle.
 show <query> Search the names in the modules in the bundle for a match.
 uninstall Uninstall a named module(s) from the connected device.
 update Update modules on the device. Use --all to automatically update
 all modules.

To automatically install all modules imported by code.py,
$ circup install --auto:

$ circup install --auto
Found device at /Volumes/CIRCUITPY, running CircuitPython 7.0.0-alpha.5.
Searching for dependencies for: ['adafruit_bmp280']
Ready to install: ['adafruit_bmp280', 'adafruit_bus_device', 'adafruit_register']

Installed 'adafruit_bmp280'.
Installed 'adafruit_bus_device'.
Installed 'adafruit_register'.

To search for a specific module containing the name bme:
$ circup show bme:

$ circup show bme
Found device at /Volumes/CIRCUITPY, running CircuitPython 6.1.0-beta.2.
adafruit_bme280
adafruit_bme680
2 shown of 257 packages.

To show version information for all the modules currently on a connected
CIRCUITPYTHON device:

$ circup freeze
adafruit_binascii==v1.0
adafruit_bme280==2.3.1
adafruit_ble==1.0.2

With $ circup freeze -r, Circup will save, in the current working directory,
a requirements.txt file with a list of all modules currently installed on the
connected device.

To list all the modules that require an update:

$ circup list
The following modules are out of date or probably need an update.

Module Version Latest
------------------ -------- --------
adafruit_binascii v1.0 1.0.1
adafruit_ble 1.0.2 4.0

To interactively update the out-of-date modules:

$ circup update
Found 3 module[s] needing update.
Please indicate which modules you wish to update:

Update 'adafruit_binascii'? [y/N]: Y
OK
Update 'adafruit_ble'? [y/N]: Y
OK

Install a module or modules onto the connected device with:

$ circup install adafruit_thermal_printer
Installed 'adafruit_thermal_printer'.

$ circup install adafruit_thermal_printer adafruit_bus_io
Installed 'adafruit_thermal_printer'.
Installed 'adafruit_bus_io'.

If you need to work with the original .py version of a module, use the –py
flag.

$ circup install –py adafruit_thermal_printer
Installed ‘adafruit_thermal_printer’.

You can also install a list of modules from a requirements.txt file in
the current working directory with:

$ circup install -r requirements.txt
Installed 'adafruit_bmp280'.
Installed 'adafruit_lis3mdl'.
Installed 'adafruit_lsm6ds'.
Installed 'adafruit_sht31d'.
Installed 'neopixel'.

Uninstall a module or modules like this:

$ circup uninstall adafruit_thermal_printer
Uninstalled 'adafruit_thermal_printer'.

$ circup uninstall adafruit_thermal_printer adafruit_bus_io
Uninstalled 'adafruit_thermal_printer'.
Uninstalled 'adafruit_bus_io'.

Use the --verbose flag to see the logs as the command is working:

$ circup --verbose freeze
Logging to /home/ntoll/.cache/circup/log/circup.log

10/18/2020 00:54:43 INFO: ### Started Circup ###
10/18/2020 00:54:43 INFO: Found device: /Volumes/CIRCUITPY
Found device at /Volumes/CIRCUITPY, running CircuitPython 6.0.0-alpha.1-1352-gf0b37313c.
10/18/2020 00:54:44 INFO: Freeze
10/18/2020 00:54:44 INFO: Found device: /Volumes/CIRCUITPY
... etc ...

The --path flag let’s you pass in a different path to the CircuitPython
mounted volume. This is helpful when you have renamed or have more than one
CircuitPython devices attached:

$ circup --path /run/media/user/CIRCUITPY1 list

The --version flag will tell you the current version of the
circup command itself:

$ circup --version
CircUp, A CircuitPython module updater. Version 0.0.1

That’s it!

Library Name Autocomplete

When enabled, circup will autocomplete library names, simliar to other command line tools.

For example:

circup install n + tab -circup install neopixel (+tab: offers neopixel and neopixel_spi completions)

circup install a + tab -circup install adafruit_ + m a g + tab -circup install adafruit_magtag

How to Activate Library Name Autocomplete

In order to activate shell completion, you need to inform your shell that completion is available for your script. Any Click application automatically provides support for that.

For Bash, add this to ~/.bashrc:

eval "$(_CIRCUP_COMPLETE=bash_source circup)"

For Zsh, add this to ~/.zshrc:

eval "$(_CIRCUP_COMPLETE=zsh_source circup)"

For Fish, add this to ~/.config/fish/completions/foo-bar.fish:

eval (env _CIRCUP_COMPLETE=fish_source circup)

Open a new shell to enable completion. Or run the eval command directly in your current shell to enable it temporarily.
Activation Script

The above eval examples will invoke your application every time a shell is started. This may slow down shell startup time significantly.

Alternatively, export the generated completion code as a static script to be executed. You can ship this file with your builds; tools like Git do this. At least Zsh will also cache the results of completion files, but not eval scripts.

For Bash:

_CIRCUP_COMPLETE=bash_source circup circup-complete.sh

For Zsh:

_CIRCUP_COMPLETE=zsh_source circup circup-complete.sh

For Fish:

_CIRCUP_COMPLETE=fish_source circup circup-complete.sh

In .bashrc or .zshrc, source the script instead of the eval command:

. /path/to/circup-complete.sh

For Fish, add the file to the completions directory:

_CIRCUP_COMPLETE=fish_source circup ~/.config/fish/completions/circup-complete.fish

Note

If you find a bug, or you want to suggest an enhancement or new feature
feel free to create an issue or submit a pull request here:

https://github.com/adafruit/circup

Discussion of this tool happens on the Adafruit CircuitPython
Discord channel [https://discord.gg/rqrKDjU].

Contributing

Please note that this project is released with a Contributor Code of Conduct.
By participating in this project you agree to abide by its terms. Participation
covers any forum used to converse about CircuitPython including unofficial and
official spaces. Failure to do so will result in corrective actions such as
time out or ban from the project.

Licensing

By contributing to this repository you are certifying that you have all
necessary permissions to license the code under an MIT License. You still
retain the copyright but are granting many permissions under the MIT License.

If you have an employment contract with your employer please make sure that
they don’t automatically own your work product. Make sure to get any necessary
approvals before contributing. Another term for this contribution off-hours is
moonlighting.

Developer Setup

Note

Please try to use Python 3.6+ while developing CircUp. This is so we can
use the
Black code formatter [https://black.readthedocs.io/en/stable/index.html]
(which only works with Python 3.6+).

Clone the repository and from the root of the project,
install the requirements:

pip install -e ".[dev]"

Run the test suite:

pytest --random-order --cov-config .coveragerc --cov-report term-missing --cov=circup

How Does Circup Work?

The circup tool checks for a connected CircuitPython device by
interrogating the local filesystem to find a path to a directory which ends
with "CIRCUITPYTHON" (the name under which a CircuitPython device is
mounted by the host operating system). This is handled in the find_device
function.

A Python module on a connected device is represented by an instance of the
Module class. This class provides useful methods for discerning if the
module is out of date, returning useful representations of it in order to
display information to the user, or updating the module on the connected
device with whatever the version is in the latest Adafruit CircuitPython
Bundle.

All of the libraries included in the Adafruit CircuitPython Bundle contain,
somewhere within their code, two metadata objects called __version__ and
__repo__.

The __repo__ object is a string containing the GitHub repository URL, as
used to clone the project.

The __version__ object is interesting because within the source code in
Git the value is always the string "0.0.0-auto.0". When a new release
is made of the bundle, this value is automatically replaced by the build
scripts to the correct version information, which will always conform to the
semver standard [https://semver.org/].

Given this context, the circup tool will check a configuration file
to discern what it thinks is the latest version of the bundle. If there is
no configuration file (for example, on first run), then the bundle version is
assumed to be "0".

Next, it checks GitHub for the tag value (denoting the version) of the very
latest bundle release. Bundle versions are based upon the date of release, for
instance "20190904". If the latest version on GitHub is later than the
version circup currently has, then the latest version of the bundle
is automatically downloaded and cached away somewhere.

In this way, the circup tool is able to have available to it both a path
to a connected CIRCUITPYTHON devce and a copy of the latest version, including
the all important version information, of the Adafruit CircuitPython Bundle.

Exactly the same function (get_modules) is used to extract the metadata
from the modules on both the connected device and in the bundle cache. This
metadata is used to instantiate instances of the Module class which is
subsequently used to facilitate the various commands the tool makes available.

These commands are defined at the very end of the circup.py code.

Unit tests can be found in the tests directory. CircUp uses
pytest [http://www.pytest.org/en/latest/] style testing conventions. Test
functions should include a comment to describe its intention. We currently
have 100% unit test coverage for all the core functionality (excluding
functions used to define the CLI commands).

To run the full test suite, type:

pytest --random-order --cov-config .coveragerc --cov-report term-missing --cov=circup

All code is formatted using the stylistic conventions enforced by
black [https://black.readthedocs.io/en/stable/]. Python coding standard are
enforced by Pylint and verification of licensing is handled by REUSE. All of these
are run using pre-commit, which you can run by using:

pip install pre-commit
pre-commit run --all-files

Please see the output from pre-commit for more information about the various
available options to help you work with the code base.

Before submitting a PR, please remember to pre-commit run --all-files.
But if you forget the CI process in Github will run it for you. ;-)

CircUp uses the Click [https://click.palletsprojects.com/en/7.x/] module to
run command-line interaction. The
AppDirs [https://pypi.org/project/appdirs/] module is used to determine
where to store user-specific assets created by the tool in such a way that
meets the host operating system’s usual conventions. The
python-semver [https://github.com/k-bx/python-semver] package is used to
validate and compare the semver values associated with modules. The ubiquitous
requests [http://python-requests.org/] module is used for HTTP activity.

Documentation, generated by Sphinx [http://www.sphinx-doc.org/en/master/],
is based on this README and assembled by assets in the doc subdirectory.
The latest version of the docs will be found on
Read the Docs [https://circup.readthedocs.io/].

Discussion of this tool happens on the Adafruit CircuitPython
Discord channel [https://discord.gg/rqrKDjU].

API

CircUp – a utility to manage and update libraries on a CircuitPython device.

	
circup.BAD_FILE_FORMAT = 'Invalid'

	Version identifier for a bad MPY file format

	
circup.BOARDLESS_COMMANDS = ['show', 'bundle-add', 'bundle-remove', 'bundle-show']

	Commands that do not require an attached board

	
circup.BUNDLE_CONFIG_FILE = '/home/docs/checkouts/readthedocs.org/user_builds/circup/checkouts/stable/circup/config/bundle_config.json'

	The path to the JSON file containing the metadata about the bundles.

	
circup.BUNDLE_CONFIG_LOCAL = '/home/docs/.local/share/circup/bundle_config_local.json'

	The path to the JSON file containing the local list of bundles.

	
circup.BUNDLE_CONFIG_OVERWRITE = '/home/docs/.local/share/circup/bundle_config.json'

	Overwrite the bundles list with this file (only done manually)

	
circup.BUNDLE_DATA = '/home/docs/.local/share/circup/circup.json'

	The path to the JSON file containing the metadata about the bundles.

	
class circup.Bundle(repo)

	All the links and file names for a bundle

Initialise a Bundle created from its github info.
Construct all the strings in one place.

	Parameters

	repo (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Repository string for github: “user/repository”

	
property current_tag

	Lazy load current cached tag from the BUNDLE_DATA json file.

	Returns

	The current cached tag value for the project.

	
property latest_tag

	Lazy find the value of the latest tag for the bundle.

	Returns

	The most recent tag value for the project.

	
lib_dir(platform)

	This bundle’s lib directory for the platform.

	Parameters

	platform (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The platform identifier (py/6mpy/…).

	Returns

	The path to the lib directory for the platform.

	
requirements_for(library_name)

	The requirements file for this library.

	Parameters

	library_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name of the library.

	Returns

	The path to the requirements.txt file.

	
validate()

	Test the existence of the expected URLs (not their content)

	
circup.CPY_VERSION = ''

	The version of CircuitPython found on the connected device.

	
circup.DATA_DIR = '/home/docs/.local/share/circup'

	The location of data files used by circup (following OS conventions).

	
circup.LOGFILE = '/home/docs/.cache/circup/log/circup.log'

	The location of the log file for the utility.

	
circup.LOG_DIR = '/home/docs/.cache/circup/log'

	The directory containing the utility’s log file.

	
class circup.Module(path, repo, device_version, bundle_version, mpy, bundle, compatibility)

	Represents a CircuitPython module.

The self.file and self.name attributes are constructed from
the path value. If the path is to a directory based module, the
resulting self.file value will be None, and the name will be the
basename of the directory path.

	Parameters

	
	path (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The path to the module on the connected
CIRCUITPYTHON device.

	repo (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The URL of the Git repository for this module.

	device_version (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The semver value for the version on device.

	bundle_version (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The semver value for the version in bundle.

	mpy (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Flag to indicate if the module is byte-code compiled.

	bundle (Bundle) – Bundle object where the module is located.

	compatibility ((str [https://docs.python.org/3.4/library/stdtypes.html#str],str [https://docs.python.org/3.4/library/stdtypes.html#str])) – Min and max versions of CP compatible with the mpy.

	
property bad_format

	A boolean indicating that the mpy file format could not be identified

	
property major_update

	Returns a boolean to indicate if this is a major version update.

	Returns

	Boolean indicating if this is a major version upgrade

	
property mpy_mismatch

	Returns a boolean to indicate if this module’s MPY version is compatible
with the board’s current version of Circuitpython. A min or max version
that evals to False means no limit.

	Returns

	Boolean indicating if the MPY versions don’t match.

	
property outofdate

	Returns a boolean to indicate if this module is out of date.
Treat mismatched MPY versions as out of date.

	Returns

	Truthy indication if the module is out of date.

	
property row

	Returns a tuple of items to display in a table row to show the module’s
name, local version and remote version, and reason to update.

	Returns

	A tuple containing the module’s name, version on the connected
device, version in the latest bundle and reason to update.

	
update()

	Delete the module on the device, then copy the module from the bundle
back onto the device.

The caller is expected to handle any exceptions raised.

	
circup.NOT_MCU_LIBRARIES = ['', 'adafruit-blinka', 'adafruit-blinka-bleio', 'adafruit-blinka-displayio', 'adafruit-circuitpython-typing', 'circuitpython_typing', 'pyserial']

	The libraries (and blank lines) which don’t go on devices

	
circup.PLATFORMS = {'7mpy': '7.x-mpy', '8mpy': '7.x-mpy', 'py': 'py'}

	Module formats list (and the other form used in github files)

	
circup.REQUESTS_TIMEOUT = 30

	Timeout for requests calls like get()

	
circup.VERBOSE = False

	Flag to indicate if the command is being run in verbose mode.

	
circup.clean_library_name(assumed_library_name)

	Most CP repos and library names are look like this:

repo: Adafruit_CircuitPython_LC709203F
library: adafruit_lc709203f

But some do not and this handles cleaning that up.
Also cleans up if the pypi or reponame is passed in instead of the
CP library name.

	Parameters

	assumed_library_name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – An assumed name of a library from user
or requirements.txt entry

	Returns

	str proper library name

	
circup.completion_for_install(ctx, param, incomplete)

	Returns the list of available modules for the command line tab-completion
with the circup install command.

	
circup.ensure_latest_bundle(bundle)

	Ensure that there’s a copy of the latest library bundle available so circup
can check the metadata contained therein.

	Parameters

	bundle (Bundle) – the target Bundle object.

	
circup.extract_metadata(path)

	Given an file path, return a dictionary containing metadata extracted from
dunder attributes found therein. Works with both .py and .mpy files.

For Python source files, such metadata assignments should be simple and
single-line. For example:

__version__ = "1.1.4"
__repo__ = "https://github.com/adafruit/SomeLibrary.git"

For byte compiled .mpy files, a brute force / backtrack approach is used
to find the __version__ number in the file – see comments in the
code for the implementation details.

	Parameters

	path (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The path to the file containing the metadata.

	Returns

	The dunder based metadata found in the file, as a dictionary.

	
circup.find_device()

	Return the location on the filesystem for the connected CircuitPython device.
This is based upon how Mu discovers this information.

	Returns

	The path to the device on the local filesystem.

	
circup.find_modules(device_path, bundles_list)

	Extracts metadata from the connected device and available bundles and
returns this as a list of Module instances representing the modules on the
device.

	Parameters

	
	device_path (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The path to the connected board.

	bundles_list (Bundle) – List of supported bundles as Bundle objects.

	Returns

	A list of Module instances describing the current state of the
modules on the connected device.

	
circup.get_bundle(bundle, tag)

	Downloads and extracts the version of the bundle with the referenced tag.
The resulting zip file is saved on the local filesystem.

	Parameters

	
	bundle (Bundle) – the target Bundle object.

	tag (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The GIT tag to use to download the bundle.

	
circup.get_bundle_versions(bundles_list, avoid_download=False)

	Returns a dictionary of metadata from modules in the latest known release
of the library bundle. Uses the Python version (rather than the compiled
version) of the library modules.

	Parameters

	
	bundles_list (Bundle) – List of supported bundles as Bundle objects.

	avoid_download (bool [https://docs.python.org/3.4/library/functions.html#bool]) – if True, download the bundle only if missing.

	Returns

	A dictionary of metadata about the modules available in the
library bundle.

	
circup.get_bundles_dict()

	Retrieve the dictionary from BUNDLE_CONFIG_FILE (JSON).
Put the local dictionary in front, so it gets priority.
It’s a dictionary of bundle string identifiers.

	Returns

	Combined dictionaries from the config files.

	
circup.get_bundles_list()

	Retrieve the list of bundles from the config dictionary.

	Returns

	List of supported bundles as Bundle objects.

	
circup.get_bundles_local_dict()

	Retrieve the local bundles from BUNDLE_CONFIG_LOCAL (JSON).

	Returns

	Raw dictionary from the config file(s).

	
circup.get_circuitpython_version(device_path)

	Returns the version number of CircuitPython running on the board connected
via device_path, along with the board ID. This is obtained from the
boot_out.txt file on the device, whose first line will start with
something like this:

Adafruit CircuitPython 4.1.0 on 2019-08-02;

While the second line is:

Board ID:raspberry_pi_pico

	Parameters

	device_path (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The path to the connected board.

	Returns

	A tuple with the version string for CircuitPython and the board ID string.

	
circup.get_circup_version()

	Return the version of circup that is running. If not available, return None.

	Returns

	Current version of circup, or None.

	
circup.get_dependencies(*requested_libraries, mod_names, to_install=())

	Return a list of other CircuitPython libraries

	Parameters

	
	requested_libraries (tuple [https://docs.python.org/3.4/library/stdtypes.html#tuple]) – The libraries to search for dependencies

	mod_names (object [https://docs.python.org/3.4/library/functions.html#object]) – All the modules metadata from bundle

	to_install (list [https://docs.python.org/3.4/library/stdtypes.html#list](str [https://docs.python.org/3.4/library/stdtypes.html#str])) – Modules already selected for installation.

	Returns

	tuple of module names to install which we build

	
circup.get_device_versions(device_path)

	Returns a dictionary of metadata from modules on the connected device.

	Parameters

	device_path (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Path to the device volume.

	Returns

	A dictionary of metadata about the modules available on the
connected device.

	
circup.get_latest_release_from_url(url)

	Find the tag name of the latest release by using HTTP HEAD and decoding the redirect.

	Parameters

	url (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – URL to the latest release page on a git repository.

	Returns

	The most recent tag value for the release.

	
circup.get_modules(path)

	Get a dictionary containing metadata about all the Python modules found in
the referenced path.

	Parameters

	path (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The directory in which to find modules.

	Returns

	A dictionary containing metadata about the found modules.

	
circup.install_module(device_path, device_modules, name, pyext, mod_names)

	Finds a connected device and installs a given module name if it
is available in the current module bundle and is not already
installed on the device.
TODO: There is currently no check for the version.

	Parameters

	
	device_path (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The path to the connected board.

	device_modules (list [https://docs.python.org/3.4/library/stdtypes.html#list](dict [https://docs.python.org/3.4/library/stdtypes.html#dict])) – List of module metadata from the device.

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name of module to install

	pyext (bool [https://docs.python.org/3.4/library/functions.html#bool]) – Boolean to specify if the module should be installed from
source or from a pre-compiled module

	mod_names – Dictionary of metadata from modules that can be generated
with get_bundle_versions()

	
circup.libraries_from_imports(code_py, mod_names)

	Parse the given code.py file and return the imported libraries

	Parameters

	code_py (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Full path of the code.py file

	Returns

	sequence of library names

	
circup.libraries_from_requirements(requirements)

	Clean up supplied requirements.txt and turn into tuple of CP libraries

	Parameters

	requirements (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – A string version of a requirements.txt

	Returns

	tuple of library names

	
circup.save_local_bundles(bundles_data)

	Save the list of local bundles to the settings.

	Parameters

	key (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The bundle’s identifier/key.

	
circup.tags_data_load()

	Load the list of the version tags of the bundles on disk.

	Returns

	a dict() of tags indexed by Bundle identifiers/keys.

	
circup.tags_data_save_tag(key, tag)

	Add or change the saved tag value for a bundle.

	Parameters

	
	key (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The bundle’s identifier/key.

	tag (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The new tag for the bundle.

License

MIT License

Copyright (c) 2019 Adafruit Industries

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 circup	

Index

 B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

B

 	
 	BAD_FILE_FORMAT (in module circup)

 	bad_format() (circup.Module property)

 	BOARDLESS_COMMANDS (in module circup)

 	Bundle (class in circup)

 	
 	BUNDLE_CONFIG_FILE (in module circup)

 	BUNDLE_CONFIG_LOCAL (in module circup)

 	BUNDLE_CONFIG_OVERWRITE (in module circup)

 	BUNDLE_DATA (in module circup)

C

 	
 	circup (module)

 	clean_library_name() (in module circup)

 	
 	completion_for_install() (in module circup)

 	CPY_VERSION (in module circup)

 	current_tag() (circup.Bundle property)

D

 	
 	DATA_DIR (in module circup)

E

 	
 	ensure_latest_bundle() (in module circup)

 	
 	extract_metadata() (in module circup)

F

 	
 	find_device() (in module circup)

 	
 	find_modules() (in module circup)

G

 	
 	get_bundle() (in module circup)

 	get_bundle_versions() (in module circup)

 	get_bundles_dict() (in module circup)

 	get_bundles_list() (in module circup)

 	get_bundles_local_dict() (in module circup)

 	
 	get_circuitpython_version() (in module circup)

 	get_circup_version() (in module circup)

 	get_dependencies() (in module circup)

 	get_device_versions() (in module circup)

 	get_latest_release_from_url() (in module circup)

 	get_modules() (in module circup)

I

 	
 	install_module() (in module circup)

L

 	
 	latest_tag() (circup.Bundle property)

 	lib_dir() (circup.Bundle method)

 	libraries_from_imports() (in module circup)

 	
 	libraries_from_requirements() (in module circup)

 	LOG_DIR (in module circup)

 	LOGFILE (in module circup)

M

 	
 	major_update() (circup.Module property)

 	
 	Module (class in circup)

 	mpy_mismatch() (circup.Module property)

N

 	
 	NOT_MCU_LIBRARIES (in module circup)

O

 	
 	outofdate() (circup.Module property)

P

 	
 	PLATFORMS (in module circup)

R

 	
 	REQUESTS_TIMEOUT (in module circup)

 	
 	requirements_for() (circup.Bundle method)

 	row() (circup.Module property)

S

 	
 	save_local_bundles() (in module circup)

T

 	
 	tags_data_load() (in module circup)

 	
 	tags_data_save_tag() (in module circup)

U

 	
 	update() (circup.Module method)

V

 	
 	validate() (circup.Bundle method)

 	
 	VERBOSE (in module circup)

 nav.xhtml

 Table of Contents

 		
 CircUp

_static/minus.png

_static/plus.png

_static/file.png

